Rubrique : Ouvertures

Tournez méninges

Suivons le chemin que nous indique Karim Zayana pour nous promener et nous repérer sur un cercle ! Cela pourrait même nous être utile pour mesurer l’épaisseur d’un ruban adhésif.

Karim Zayana

© APMEP Mars 2019

⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅♦⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅

Continuer la lecture de Tournez méninges


Changement de regard sur le cercle

Caroline Bulf et Valentina Celi nous présentent un problème original portant sur la reproduction d’un cercle à l’aide d’un gabarit de demi-disque et d’un compas, problème conçu dans le but de favoriser un changement de regard sur cette figure géométrique, d’articuler certaines conceptions qui lui sont associées et de matérialiser ses éléments caractéristiques.

Caroline Bulf & Valentina Celi

© APMEP Décembre 2018

⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅♦⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅

Continuer la lecture de Changement de regard sur le cercle


Cercles discrets

François Boucher nous propose une promenade — historiquement datée : essentiellement les années 1960-1980 — dans quelques problèmes de tracé d’objets géométriques — essentiellement notre vedette du moment : le cercle — en mettant en évidence le rôle de mathématiques par ailleurs élémentaires : un peu d’arithmétique, de géométrie, d’analyse et beaucoup d’algèbre.

François Boucher

© APMEP Décembre 2018

⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅♦⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅

Continuer la lecture de Cercles discrets


« Informathique »

Interdisciplinaire, mouvante et prolifique : elle a de quoi intimider. Pourtant l’informatique n’est pas une science occulte. Observée à travers le prisme des mathématiques, les auteurs nous invitent dans son univers. Ils y joignent de nombreux exemples codés en Python pour illustrer leur propos et éclairer le comportement, parfois étonnant, de l’ordinateur.

Karim Zayana et Edwige Croix

© APMEP Décembre 2018

⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅♦⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅

Continuer la lecture de « Informathique »


Polynômes tordus

Xavier Caruso nous emmène à la découverte des polynômes tordus. Pour comprendre comment l’introduction d’une multiplication non commutative sur l’ensemble des polynômes à coefficients complexes permet de résoudre certains problèmes de géométrie plane !

Xavier Caruso

© APMEP Septembre 2018

⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅♦⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅

Continuer la lecture de Polynômes tordus


Le Kepler Music Project :
un spectacle pour jouer avec les lois de Kepler

Depuis 2012, Le Kepler Music Project1 est un spectacle écrit, composé et interprété par Guy Boistel et Stéphane Le Gars, tous deux chercheurs en histoire des sciences, professeurs de physique-chimie en lycée et musiciens de jazz. Ce spectacle vise à expliquer à tous publics, (grand public, lycéens, chercheurs2, musiciens)  et en tous lieux (salles de concert, planétariums, festivals d’astronomie, chapelles, etc.) comment Johannes Kepler a brassé d’importantes considérations pour aboutir à ce que nous appelons aujourd’hui les trois lois de Kepler, qui sont enseignées en classe de Terminale S, et fondent l’astronomie moderne qui a émergé au XVIIe siècle.

Stéphane Le Gars

© APMEP Septembre 2018

⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅♦⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅

Continuer la lecture de Le Kepler Music Project : un spectacle pour jouer avec les lois de Kepler


Différencier en début de cycle 2

Le fil rouge de ce numéro est l’occasion pour Serge Petit de nous livrer sa réflexion sur la différenciation. En s’appuyant sur la numération en cycle 2, il décortique le mot et le concept, et propose un cheminement transposable à tous niveaux, qui nous évitera de tomber dans les pièges d’une pseudo-différenciation qui pourrait s’avérer discriminante.

Serge Petit

© APMEP Septembre 2018

⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅♦⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅

Continuer la lecture de Différencier en début de cycle 2


Une relecture des structures multiplicatives
de Gérard Vergnaud à travers le regard
de la modélisation

Difficile d’aborder un fil rouge sur la multiplication sans parler des structures multiplicatives de Vergnaud. Richard Cabassut les envisage ici à travers le regard de la modélisation. Un article de didactique à la portée de tous.

Richard Cabassut

© APMEP Septembre 2018

⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅♦⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅

Continuer la lecture de Une relecture des structures multiplicatives de Gérard Vergnaud à travers le regard de la modélisation


Le projet Loglang

Vous venez de découvrir l’article « Discerner représentations et concepts. Quand l’art et les mathématiques parlent la même langue ». Cet article est extrait d’un projet de recherche du CREM (le Centre de Recherche sur l’Enseignement des Mathématiques, situé à Nivelles, en Belgique) intitulé Loglang, en référence aux thématiques de la logique et du langage. Nous vous proposons dans ce complément d’en apprendre un peu plus sur ce projet, dont les préoccupations rejoignent le thème fil rouge de ce bulletin.

Vincent Degauquier et Samuël Di Emidio

© APMEP Juin 2018

⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅♦⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅

Continuer la lecture de Le projet Loglang


Vrai ou faux ? Parlons-en !

En mathématiques, nous avons des usages langagiers. Les élèves découvrent en même temps les objets mathématiques et la façon dont on en parle. Quelle compréhension ont-ils des implicites de nos formulations ? Comment travailler ces questions ? Étude d’un cas : la quantification implicite de l’implication.

Christophe Hache et Emmanuelle Forgeoux

© APMEP Juin 2018

⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅♦⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅

Continuer la lecture de Vrai ou faux ? Parlons-en !